Some Interpolation Theorems for Polynomials

David Ferguson*
Department of Mathematics, University of Southern California, Los Angeles, California 90007
Communicated by Oved Shisa

Received July 18, 1971

Let $E=\| \boldsymbol{e}_{i j} \prod_{j=0, \ldots, n, n-1}^{i=1, \ldots, k}$ be a given n-incidence matrix and suppose knots $x_{1}<x_{2}<\cdots<x_{k}$ are given. This paper studies the following problem related to the matrix E : if p is an integer, $1 \leqslant p \leqslant n-1$, and $g(x) \in C^{(n-p)}\left[x_{1}, x_{k}\right]$, does there exist a function $f(x)$ satisfying
(i) $f^{(j)}\left(x_{i}\right)=0$ when $\quad e_{i j}=1 \quad$ and
(ii) $f^{(p)}(x) \equiv g(x)$?

Certain functions $W_{1}(t), \ldots, W_{n-1}(t)$ which do not depend on g are constructed with the result that for almost all choices of the knots x_{i} a solution exists if

$$
\int_{x_{1}}^{x_{k}} g^{(n)}(t) W_{q}^{(n-q)}(t) d t=0 \quad \text { for } \quad q=p, \ldots, n-1 .
$$

This result is applied to the nonhomogenous problem where data $y_{i j}$ is prescribed and (i) is replaced with $f^{(j)}\left(x_{i}\right)=y_{i j}$. Also, the concept of a simple matrix is introduced, and some results on the relation between poised and simple matrices are given.

Introduction

Some interpolation problems which arise from the study of Hermite Birkhoff systems are examined in this paper. The main problem studied here is the following: Let $E=\left\|e_{i j}\right\|_{j=0, \ldots, n-1}^{i=1, \ldots k}$ be an n-incidence matrix. Suppose x_{1}, \ldots, x_{k} are given, along with an integer $p, 1 \leqslant p \leqslant n-1$, and a function $g \in C^{(n-p)}$. When does there exist a function $f(x)$ with the properties:
(i) $f^{(j)}\left(x_{i}\right)=0$ whenever $e_{i j}=1$, and
(ii) $f^{(p)}(x) \equiv g(x)$?

[^0]This problem is important for the study of properties of functions $f(x)$ which satisfy (i). For example, the question of when $(i) \Rightarrow f^{(n-1)}(x)$ has a zero leads immediately to the above problem for $p=n-1$.

The necessary background and machinery are developed in the first two sections. Section 3 contains a discussion of the above problem and its complete solution when E is poised at \mathbf{x} (see Section 1). Section 4 presents some applications and examples. The applications deal with the problem (defined in the paper) of simple matrices and with the problem of interpolation of nonhomogenous data. Section 5 presents a proof of Theorem 3.3.

1. Preliminaries

Let E denote the n-incidence matrix $\left\|e_{i j}\right\|_{j=0, \ldots, n-1}^{i=1, \ldots, k}$ where each $e_{i j}$ is either zero or one and the sum of the entries is $n\left(\sum_{i=1}^{k} \sum_{j=0}^{n-1} e_{i j}=n\right)$. For a given vector $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right) \in R^{k}$ with components that satisfy $x_{1}<x_{2}<\cdots<x_{k}$ define the class of functions $Z(E, \mathbf{x})$ by

$$
f \in Z(E, \mathbf{x}) \quad \text { iff } \quad f^{(j)}\left(x_{i}\right)=0 \quad \text { when } \quad e_{i j}=1
$$

Let Π_{n-1} be the class of polynomials of degree less than or equal to $n-1$.
Definition 1.1. E is poised at \mathbf{x} if $Z(E, \mathbf{x}) \cap \Pi_{n-1}=0$ (the zero polynomial); E is order-poised if it is poised at all \mathbf{x} satisfying $x_{1}<x_{2}<\cdots<x_{k}$; E is simple at \mathbf{x} if $f \in Z(E, \mathbf{x}) \Rightarrow$ each of the functions $f, f^{\prime}, \ldots, f^{(n-1)}$ vanishes at least once on the interval $\left[x_{1}, x_{k}\right]$.

The concept of a simple matrix is new. It is to be regarded as a generalization of Rolle's Theorem. Note that Rolle's Theorem is precisely the statement that the matrix $\left\|_{1}^{1} 0 \underset{0}{0}\right\|$ is simple at all $\mathrm{x}=\left(x_{1}, x_{2}\right)$. Except for Theorem 1.3, simple matrices do not appear until Section 4.

As examples, consider the matrices

$$
E_{1}=\left\|\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right\| \quad \text { and } \quad E_{2}=\left\|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right\|
$$

E_{1} is order-poised and simple. In fact, let $f \in Z\left(E_{1}, \mathbf{x}\right)$. Then Rolle's Theorem says that f^{\prime} has an odd order zero in the open interval $\left(x_{1}, x_{3}\right)$. Thus, either $f^{\prime \prime \prime}\left(x_{2}\right)=0$ or there is a point $\alpha \neq x_{2}$ at which $f^{\prime}(\alpha)=0$. In the second case Rolle's Theorem can be applied twice more to yield a point $\beta \in\left(x_{1}, x_{3}\right)$ for which $f^{\prime \prime \prime}(\beta)=0$. In both cases f satisfies the condition for being simple since $f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}$ all vanish at least once. Also, if $f \not \equiv 0$, then $f \notin \pi_{3}$ and E_{1} is order-poised.
E_{2} is neither order-poised nor simple. Take $x_{1}=0, x_{3}=1$. If $x_{2}=1 / 2$, E_{2} is not poised by selecting $f(x)=x(x-1)$. For $x_{2} \neq 1 / 2, E_{2}$ is poised. Choosing $f(x)=e^{\alpha x}-x\left(e^{\alpha}-1\right)-1$ where $\alpha e^{\alpha x_{2}}-e^{\alpha}+1=0$ gives a function which satisfies $f(0)=f(1)=f^{\prime}\left(x_{2}\right)=0$ and $f^{\prime \prime}(x)=\alpha^{2} e^{\alpha x} \neq 0$ for every choice of x. Thus, E_{2} is not simple at any $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ with $x_{1}<x_{2}<x_{3}$.

The proof of Theorem 3.3 requires the concept of an unconditionally poised matrix.

Definition 1.2. E is unconditionally poised if, for given distinct complex numbers z_{1}, \ldots, z_{k} the condition that $p(z) \in \Pi_{n-1}$ and $p^{(j)}\left(z_{i}\right)=0$ if $e_{i j}=1$ implies $p(z) \equiv 0$.

The example E_{1} is not unconditionally poised. Choose x_{1}, x_{3} to be distinct cube roots of unity and $x_{2}=0$. Then $p(x)=x^{3}-1$ shows that E_{1} is not poised at $\left(x_{1}, x_{2}, x_{3}\right)$.

Let $m_{j}=\sum_{i=1}^{k} e_{i j} ; \quad M_{j}=\sum_{p=0}^{j} m_{p}$. Note that $M_{j}=M_{j-1}+m_{j}$ and $M_{n-1}=n$.

Definition 1.3. E satisfies the Polya conditions (PC) if $M_{j} \geqslant j+1$ for $j=0, \ldots, n-1$. If equality holds for some j then E may be written as $E=E^{\prime} \oplus E^{\prime \prime}$ where E^{\prime} consists of columns 0 thru j of E and $E^{\prime \prime}$ consists of the remaining columns. E satisfies the strong Polya conditions (SPC) if $M_{j} \geqslant j+2$ for $j=0, \ldots, n-2$.

Note that matrices satisfying (SPC) do not admit decompositions of the form $E^{\prime} \oplus E^{\prime \prime}$. The following theorems characterize matrices that are poised for some \mathbf{x} and matrices that are unconditionally poised. The reader is referred to [3] for proofs.

Theorem 1.1. (i) There exists a vector \mathbf{x} at which E is poised iff E satisfies (PC). In this case the set of vectors \mathbf{x} at which E fails to be poised is nowhere dense in R^{k}. (ii) If $E=E^{\prime} \oplus E^{\prime \prime}$, then it is poised at \mathbf{x} iff $E^{\prime}, E^{\prime \prime}$ are poised at \mathbf{x}.

Theorem 1.2. Let E satisfy (SPC). E is unconditionally poised iff $k=2$ or E is a Hermite matrix (i.e., if $e_{i j}=1$ then $e_{i j^{\prime}}=1$ for each $j^{\prime} \leqslant j$).

Remark 1.1. If E satisfies (PC), E is poised a.e. The a.e. restriction appears throughout this paper (see the theorems of Sections 3 and 5) and cannot generally be removed.

The following theorem relates poised matrices and simple matrices.
Theorem 1.3. E simple at $\mathbf{x} \Rightarrow E$ poised at \mathbf{x}.

Proof. Let E be simple and $p(x)$ be a polynomial of exact degree $m \geqslant 0$. $p^{(m)}(x) \equiv$ const. Thus, if $p(x) \in Z(E, \mathbf{x}), m \geqslant n$ and E is poised.

The converse of this theorem is not true in general as will be shown in Section 4. The class of conservative matrices (see [1, 4, 5] and also Section 4) provides a large collection of simple matrices.

If E is poised at \mathbf{x}, then the linear system

$$
a_{n-1} \frac{x_{i}^{n-1-j}}{(n-1-j)!}+\cdots+a_{j+1} x_{i}+a_{j}=y_{i j} ; \quad e_{i j}=1
$$

has a unique solution for each choice of the values $y_{i j}$. Let V be the coefficient matrix of (1.1). Thus,

$$
V=\left(\left.D^{j} \frac{x^{n-1-p}}{(n-1-p)!}\right|_{x=x_{i}}\right)_{p=0, \ldots, n-1}^{\varepsilon_{i j-1}}
$$

with the index pairs (i, j) for which $e_{i j}=1$ forming the rows of $V . V$ will be called the Vandermonde (VdM) matrix of $E, \Delta=\operatorname{det} V$ will be called the VdM determinant of E. E is poised at \mathbf{x} iff $\Delta \neq 0$.

As an example, consider the matrix

$$
E_{1}=\left\|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right\|
$$

In this case,

$$
V=\left(\begin{array}{ccc}
x_{1}^{2} / 2 & x_{1} & 1 \\
x_{2} & 1 & 0 \\
x_{3}^{2} / 2 & x_{3} & 1
\end{array}\right) .
$$

No convention is made regarding the ordering of the rows of V since no formal matrix algebra is ever performed on V. Thus, any permutation of the rows of V will be a valid representation in what follows.

In the rest of the paper the notation will be simpler if the following conventions are adopted.

1. \mathbf{x} will always represent a vector of the form $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)$ with $0 \leqslant x_{1}<\cdots<x_{k} \leqslant 1$;
2. If $\Gamma_{i j}$ are objects (numbers, functions, etc.) corresponding to $e_{i j}=1$, then $\sum \Gamma_{i j}$ will denote the sum taken over all index pairs (i, j) with $e_{i j}=1$. Similarly, $\Sigma_{(i, j)=s} \Gamma_{i j}$ will denote the sum taken over all index pairs (i, j) which satisfy the statement S and satisfy
$e_{i j}=1$. For example $\sum_{j \leqslant 3} \Gamma_{i j}$ means the sum over all pairs (i, j) with $e_{i j}=1$ and $j \leqslant 3$.
3. $\int_{0}^{1} f(t) g(t) d t \equiv\langle f, g\rangle$.

2. The Peano Kernel $K(x, t)$ and its Properties

Suppose E is poised at \mathbf{x}. Let $L_{i j}(x)$ denote the unique elements of Π_{n-1} which satisfy

$$
L_{i j}^{\left(i^{\prime}\right)}\left(x_{i^{\prime}}\right)=\delta_{(i, j)\left(i^{\prime}, j^{\prime}\right)} \quad \text { where } \quad e_{i j}=e_{i^{\prime} j^{\prime}}=1
$$

$R f$ is the linear operator defined by

$$
\begin{equation*}
R f(x)=f(x)-\sum L_{i j}(x) f^{(j)}\left(x_{i}\right) \tag{2.2}
\end{equation*}
$$

Since $R f \equiv 0$ for $f \in \Pi_{n-1}$, Peano's Theorem characterizes R on the class $C^{(n)}[0,1]$ as

$$
\begin{equation*}
R f(x)=\int_{0}^{1} f^{(x)}(t) K(x, t) d t \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
K(x, t)=\frac{(x-t)_{+}^{n-1}}{(n-1)!}-\sum L_{i j}(x) \frac{\left(x_{i}-t\right)_{+}^{n-1-j}}{(n-j)!} . \tag{2.4}
\end{equation*}
$$

(The function $(y-z)_{+}^{p}$ is defined by

$$
(y-z)_{+}^{p}= \begin{cases}(y-z)^{p} & \text { if } \quad y \geqslant z \\ 0 & \text { if } \quad y<z)\end{cases}
$$

Theorem 2.1. (i) $f \in Z(E, \mathbf{x}) \cap C^{(n)}[0,1]$ iff $f(x) \equiv R f$.
(ii) If $f \in C[0,1]$, then $g(x)=\int_{0}^{1} f(t) K(x, t) d t \in Z(E, \mathbf{x}) \cap C^{(n)}[0,1]$.

Proof. (i) is trivial. To prove (ii) observe that

$$
g^{(j)}\left(x_{i}\right)=\int_{0}^{1} f(t)\left(\left.\frac{\partial^{j}}{\partial x^{j}} K(x, t)\right|_{x=x_{i}}\right) d t
$$

and

$$
\left.\frac{\partial^{j}}{\partial x^{j}} K(x, t)\right|_{x=x_{i}} \equiv \frac{\left(x_{i}-t\right)_{+}^{n-1-j}}{(n-1-j)!}-\frac{\left(x_{i}-t\right)_{+}^{n-1-j}}{(n-1-j)!} \equiv 0 \quad \text { if } \quad e_{i j}=1 .
$$

Thus, $g \in Z(E, \mathbf{x}) \cap C^{(n)}[0,1]$.

For $x \in\left[x_{1}, x_{k}\right], K(x, t)$ has the following properties.

$$
\begin{equation*}
K(x, t) \equiv 0 \quad \text { for } \quad t<x_{1} \quad \text { and } \quad t>x_{k} \tag{2.5}
\end{equation*}
$$

This follows for $t>x_{k}$ by the definition of $(x-t)_{+}^{k} / k$!. For fixed $t<x_{1}$, $K(x, t) \in \Pi_{n-1}$ and $K(x, t) \in Z(E, \mathbf{x})$. Since E is poised at $\mathbf{x}, K(x, t) \equiv 0$.

$$
\begin{equation*}
K(x, t)=\frac{(x-t)_{+}^{n-1}}{(n-1)!}-\frac{1}{\Delta} \sum_{p=0}^{n-1} W_{p}(t) \frac{x^{p}}{p!} \tag{2.6}
\end{equation*}
$$

where Δ is the VdM determinant of E,

$$
W_{p}(t)=\sum \Delta_{i j}^{(p)} \frac{\left(x_{i}-t\right)_{-}^{n-1-j}}{(n-1-j)!}
$$

and $\Delta_{i j}^{(p)}$ is the cofactor in Δ of the element $x_{i}^{p-j} /(p-j)$!. The representation follows by observing that $L_{i j}(x)=1 / \Delta \sum_{p=0}^{n-1} \Delta_{i j}^{(p)}\left(x^{p} / p!\right)$ and then rearranging the expression for $K(x, t)$.
(i) $W_{p}(t) \equiv 0 \quad$ for $t>x_{k}$
(ii) $W_{p}(t) \in \Pi_{n-1} \quad$ for $\quad x_{i-1}<t<x_{i}$
(iii) $W_{p}^{(j)}(t)$ is discontinuous at $t=x_{i}$ iff $e_{i, n-1-j}=1$ and $\Delta_{i, n-1-j}^{(p)} \neq 0$.
(iv) $W_{p}(t) \equiv(-1)^{n-1-p} \frac{t^{n-1-p}}{(n-1-p)!} \Delta \quad$ for $\quad t<x_{1}$.
(v) $W_{p}^{(n-p)}(t) \equiv 0 \quad$ for $\quad t<x_{1}$.

Statement (iv) follows from using the fact that $K(x, t) \equiv 0, t<x_{1}$ and equating powers of x.

The functions $W_{p}(t)$ play a crucial role in what follows.
Lemma 2.1. Let $f \in C^{n}[0,1]$. For $p=1, \ldots, n-1$,

$$
\left\langle f^{(p)}, W_{p}^{(n-p)}\right\rangle=(-1)^{n-p} \sum_{j \leqslant p-1} \Delta_{i j}^{(p)} f^{(j)}\left(x_{i}\right)
$$

while

$$
\int_{0}^{1} f(t) d W_{0}^{(n-1)}(t)=(-1)^{n} \sum_{j=0} \Delta_{i j}^{(p)} f^{(j)}\left(x_{i}\right)
$$

Proof.

$$
W_{p}^{(n-p)}(t)=(-1)^{n-p} \sum_{j \leqslant p-1} \Delta_{i j}^{(p)} \frac{\left(x_{i}-t\right)_{+}^{p-1-j}}{(p-1-j)!}
$$

If $W_{p}^{(n-p)}(t)$ is continuous at $t=x_{1}$ or x_{k}, its value is zero. This follows from (2.7) (i) and (v).

$$
\left\langle f^{(p)}, W_{\nu}^{(n-p)}\right\rangle=\sum_{i=1}^{k-1} \int_{x_{i}}^{x_{i+1}} f^{(p)}(t) W_{\nu}^{(n-p)}(t) d t .
$$

Repeated integration by parts yields the formula

$$
\int_{x_{i}}^{x_{i+1}} f^{(p)}(t) W_{p}^{(n-p)}(t) d t=\left.\sum_{j=0}^{p-1}(-1)^{p-1-j} f^{(j)}(x) W_{p}^{(n-j-1)}(x)\right|_{x_{i}} ^{x_{i+1}}
$$

Hence,

$$
\left\langle f^{(p)}, W_{p}^{(n-p)}\right\rangle=\left.\sum_{i=0}^{k-1} \sum_{j=0}^{p-1}(-1)^{p-1-j} f^{(j)}(x) W_{p}^{(n-j-1)}(x)\right|_{x_{i}} ^{x_{i+1}} .
$$

Contribution to the sum only occurs at points x_{i} where $W_{p}^{(n-j-1)}(x)$ is discontinuous. At such points the contribution is equal to $f^{(j)}\left(x_{i}\right) \Delta_{i j}^{(p)}(-1)^{p-j-1}$ $(-1)^{n-j-1}$ which establishes the lemma for $p=1, \ldots, n-1$. For $p=0$,

$$
\int_{0}^{1} f(t) d W_{0}^{(n-1)}(t)=(-1)^{n} \sum_{j=0} \Delta_{i j}^{(0)} f\left(x_{i}\right)
$$

since $W_{0}^{(n-1)}(t) \equiv(-1)^{n} \sum_{j=0} \Delta_{i j}^{(0)}\left(x_{i}-t\right)_{+}^{0}$.
Remark 2.1. Setting $p=n-1$ yields

$$
\left\langle f^{(n-1)}, W_{n-1}^{\prime}\right\rangle=\sum_{j \leqslant n-2} f^{(j)}\left(x_{i}\right) \Delta_{i j}^{(n-1)}
$$

This formula is due originally to G. D. Birkhoff [2].

3. Interpolation Theorems

1. Introduction

This section contains the main results of the paper. E is assumed throughout to be poised at \mathbf{x} and to satisfy the strong Polyá conditions $M_{j} \geqslant j+2$ for $j=0, \ldots, n-2$ (see Definition 1.3). The problem considered is the following.
(*) Let p be a fixed integer, $1 \leqslant p \leqslant n-1$ and $g \in C^{(n-p)}[0,1]$. When does there exist $f \in Z(E, \mathbf{x})$ for which $f^{(p)} \equiv g$?
The case $p=n-1$ has been considered by Birkhoff [2].
Notice that the assumption that E is poised at \mathbf{x} implies uniqueness of any solution to (*). In fact if f_{1} and f_{2} are two such solutions then
$f_{1}-f_{2} \in Z(E, \mathbf{x})$ is a polynomial of degree at most $p-1$. Thus, $f_{1}-f_{2} \equiv 0$. The problem (*) also has meaning for $p \geqslant n$ and the solution is easily obtained. Let $\hat{g}(x)$ be a p-fold integral of g. There is a unique $p(x) \in \Pi_{n-1}$ satisfying $\hat{g}^{(j)}\left(x_{i}\right)+p^{(j)}\left(x_{i}\right)=0$ for $e_{i j}=1$. Let $f(x)=\hat{g}(x)+p(x)$. Then $f \in Z(E, \mathbf{x})$ and $f^{(p)} \equiv g$. For $p=n$ the solution is unique while for $p>n$, $f^{(n)} \equiv \hat{g}^{(n)}$ and $\hat{g}^{(n)}$ contains $p-n$ arbitrary parameters and the solution exists and is not unique. The problem (${ }^{*}$) with $1 \leqslant p \leqslant n-1$ has a solution when, and only when, the polynomial $p(x)$ obtained above has degree less than p.

Cramer's rule gives $p(x)$ as

$$
p(x)=\sum_{q=0}^{n-1} A_{q} \frac{x^{q}}{q!} \quad \text { where } \quad A_{q}=-\frac{1}{\Delta} \sum \hat{g}^{(j)}\left(x_{i}\right) \Delta_{i j}^{(q)} .
$$

Thus, a necessary and sufficient condition for $\left({ }^{*}\right)$ to have a solution is the vanishing of the quantities $\sum \hat{g}^{(j)}\left(x_{i}\right) \Delta_{i j}^{(q)}$ for $q=p, \ldots, n-1$. Clearly, a necessary condition for a solution is that $g^{(j-p)}\left(x_{i}\right)=0$ for each $e_{i j}=1$ with $j \geqslant p$. This leads to the following.

Theorem 3.1. Problem (*) has a solution iff

$$
\begin{equation*}
g^{(i-p)}\left(x_{i}\right)=0 \quad \text { if } \quad e_{i j}=1, \quad j \geqslant p \tag{3.1}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{i \leqslant q-1} \hat{g}^{(j)}\left(x_{i}\right) \Delta_{i j}^{(q)} & =(-1)^{n-q}\left\langle\hat{g}^{(q)}, W_{q}^{(n-q)}\right\rangle \\
& =(-1)^{n-q}\left\langle g^{(q-q)}, W_{q}^{(n-q)}\right\rangle=0 \tag{3.2}
\end{align*}
$$

for $q=p, \ldots, n-1$.
The rest of this section shows the rather surprising fact that (3.2) is not only a necessary condition, but for almost every \mathbf{x} it is a sufficient condition. The proof begins by studying a certain linear system that arises from the fact that $W_{q}^{(n-q)}(t) \equiv 0$ for $t<x_{1}$. Conditions are given under which the solutions which are furnished by the coefficients of $W_{q}^{(n-q)}$ span the null space of the linear system (Theorem 3.2). The problem of when (3.2) \Rightarrow (3.1) is then attacked. It is reduced by means of Theorem 3.2 to showing that another linear system is nonsingular.

2. A Linear System

Consider the functions $W_{p}^{(n-p)}$ for $q=p, \ldots, n-1$. By property (2.7v) these functions all vanish identically for $t<x_{1}$.

Thus,

$$
0 \equiv W_{q}^{(n-p)}(t)=\sum_{j \leqslant p-1} \Delta_{i j}^{(q)}\left(\left(x_{i}-t\right)_{+}^{p-j-1} /(p-j-1)!\right) \quad \text { for } \quad t<x_{1} .
$$

Equating powers of t yields

$$
\begin{equation*}
\frac{(-1)^{r}}{r!} \sum_{j \leqslant p-1} \Delta_{i j}^{(q)} \frac{x_{i}^{p-1-j-r}}{(p-1-j-r)!}=0 \quad \text { for } \quad r=0, \ldots, p-1 \tag{3.3}
\end{equation*}
$$

and $q=p, \ldots, n-1$. Hence, the vectors $V_{a}^{T}=\left(\Delta_{i j}^{(q)}\right)_{j \leqslant p-1}^{T}$ provide $n-p$ solutions to the linear system

$$
A \mathbf{v}=0
$$

where A is the $p \times M_{p-1}$ matrix

$$
A=\left(\frac{x_{i}^{p-1-j-r}}{(p-1-j-r)!}\right)_{e_{i j}=\mathbf{1} ; j \leqslant p-1}^{r=0, \ldots, p-1} .
$$

(The index pairs (i, j) with $e_{i j}=1, j \leqslant p-1$ determine the columns of A.)
Now A^{T} is the VdM matrix of the truncated matrix $E^{(p)}=\left\|e_{i j}\right\|_{j \leqslant p-1}$. Since E is poised at \mathbf{x} there is no nontrivial $p(x) \in \Pi_{p-1}$ satisfying $p^{(j)}\left(x_{i}\right)=0$ for all $e_{i j}=1, j \leqslant p-1$. Hence, det A^{T} has a nonzero $p \times p$ minor and the dimension of the null space of (3.3) is at most $M_{p-1}-p \leqslant n-p$. Thus, there are more than enough vectors $V_{q}{ }^{T}$ to span the null space of (3.3). The problem now is to produce $M_{p-1}-p$ of them that are linearly independent.

Let V be the VdM matrix of E (see Section 1, formula 1.1). Represent $r \times r$ minors of V (and similarly $\left.V^{-1}\right)$ by $V\left(a_{a_{1}, \ldots, q_{r}}^{Z_{1}}\right.$) where the Z_{i} 's are index pairs (s, t) with $e_{s, t}=1$. Note that for fixed p the vector ($1 / \Delta$) $V_{q}{ }^{T}$ consists of the first M_{p-1} components of the q-th row of V^{-1}.

THEOREM 3.2. Let E satisfy (SPC) and set $L_{p-1}=M_{p-1}-p$. For almost every choice of \mathbf{x} the following two statements hold simultaneously:
(i) the vectors $V_{p}^{T}, \ldots, V_{p-1+L_{p-1}}^{T}$ span the null space of (3.2) and
(ii) if $m_{p} \geqslant 1$ then for each $l=1, \ldots, m_{p}$ there are constants $a_{p+l} \neq 0$, $b_{q}^{(2)}$ for which $V_{p}{ }^{T}=a_{p+l} V_{p+l}^{T}+\sum_{q=p+m_{p}+1}^{M_{p}-1} b_{q}^{(i)} V_{q}^{T}$.

Proof. Consider the vectors $\left\{V_{q}\right\}_{s=1}^{L_{p-1}}$ where the q_{s} 's form an increasing sequence of integers with $q_{1} \geqslant p$. These vectors are independent iff there are L_{p-1} columns $Z_{1}, \ldots, Z_{L_{p-1}}$ among the first M_{p-1} columns of V^{-1} for which

$$
V^{-1}\binom{q_{1}, \ldots, q_{L_{p-1}}}{Z_{1}, \ldots, Z_{L_{p-1}}} \neq 0
$$

This is nonzero iff

$$
V\binom{Z_{1}^{\prime}, \ldots, Z_{n-L_{p-1}}^{\prime}}{q_{1}^{\prime}, \ldots, q_{n-L_{p-q}}^{\prime}} \neq 0
$$

where both $\{Z\} \cup\left\{Z^{\prime}\right\}$ and $\{q\} \cup\left\{q^{\prime}\right\}$ are complete enumerations of the rows and columns of V.

Construct an n-incidence matrix E^{*} as follows:

$$
E^{*}=\left\|e_{i j}^{*}\right\|_{j=0, \ldots, n-1}^{i=1, \ldots, k+1}
$$

where

$$
e_{i j}^{*}= \begin{cases}1 & \begin{array}{l}
\text { if } i=k+1, j=q_{s} \text { for } 1 \leqslant s \leqslant L_{p-1} \\
\text { or }(i, j)=Z_{s}^{\prime} \text { for } 1 \leqslant s \leqslant n-L_{p-1} \\
\text { otherwise. }
\end{array} \\
0 & \end{cases}
$$

Thus, E^{*} is obtained from E by first adjoining a $(k+1)$ row with L_{p-1} ones corresponding to the indices q_{s} and then changing the index pairs Z_{s} from one to zero.

Let Δ^{*} be the VdM determinant of E^{*}. The utility of E^{*} lies in the fact that

$$
V\binom{Z_{1}^{\prime}, \ldots, Z_{n-L_{p-1}}^{\prime}}{q_{1}^{\prime}, \ldots, q_{n-L_{p-1}}^{\prime}}= \pm\left.\Delta^{*}\right|_{x_{k+1}=0}
$$

In order to establish this fact observe that at $x_{k+1}=0$ the rows of Δ^{*} which correspond to index pairs $\left(k+1, q_{s}\right)$ consist entirely of zeros except for a single one in the q_{s} position. Thus, these rows and columns may be deleted from Δ^{*} and the result only affects the sign of the determinant. However, this can also be obtained from the determinant Δ by removing the rows corresponding to index pairs z_{s} and columns corresponding to q_{s}.

Applying Theorem 1.1(i) yields the following.
Lemma 3.1. The vectors $\left\{V_{q_{8}}\right\}_{i=1}^{L_{p-1}}$ are independent for almost every \mathbf{x} iff $M_{j}{ }^{*} \geqslant j+1$ for each $j=0, \ldots, n-1$; i.e., E^{*} satisfies (PC).

To complete the proof of Theorem 3.2 it remains to show that index pairs $\left\{Z_{s}\right\}$ and indices $\left\{q_{s}\right\}$ can be selected so that E^{*} satisfies (PC) and so that statements (i) and (ii) hold. Since E is poised at \mathbf{x} there is a p-incidence submatrix E^{\prime} of the matrix $E^{(p)}=\left\|e_{i j}\right\|_{i \leqslant p}$ which is p-poised at \mathbf{x}. Let the remaining $M_{p-1}-p=L_{p-1}$ ones of $E^{(p)}$ form the set $Z_{1}, \ldots, Z_{\chi_{p-1}}$. Now $E^{*}=E^{\prime} \oplus E^{\prime \prime}$ where $E^{\prime \prime}$ is the matrix $\left\|e_{i j}\right\|_{j \geqslant p}$ with a column with ones in
the $q_{s}-p$ positions, $s=1, \ldots, L_{p-1}$ adjoined to it. E^{\prime} is poised at \mathbf{x}. If $q_{s}=p+(s-1), s=1, \ldots, L_{p-1}$, then $E^{\prime \prime}$ satisfies (PC) and is poised almost everywhere. By Theorem 1.1 (ii) E^{*} is also poised almost everywhere and statement (i) of Theorem 3.2 holds.

Statement (ii) still has to be shown. In order that the matrix $E^{\prime \prime}$ defined above satisfy (PC) it is sufficient to choose $q_{s}=p+m_{p}+s-1$ for $s=2, \ldots, L_{p-1}$ and q_{1} to be any of the numbers $p, \ldots, p+m_{p}$. Thus, for almost every \mathbf{x} the vectors V_{p+l} and $\left\{V_{q}\right\}_{q=p+m_{p}+1}^{M_{p}-1}$ for $l=0, \ldots, m_{p}$ span the solution set of (3.3). For $l \neq 0$ this gives the representation (ii) of the vector V_{p}. Also, $a_{p+b} \neq 0$ since, if it were zero, then the vectors V_{p} and $\left\{V_{q}\right\}_{q=p+m_{p}+1}^{M_{q}-1}$ would not be independent. This contradicts the fact that E^{*} is poised at \mathbf{x}.

The "almost every" condition of Theorem 3.1 can not be removed in general. Thus, if

$$
E=\left\|\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right\|
$$

and $p=2$, then

$$
E^{*}=\left\|\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right\| \oplus\| \| \begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array} \|
$$

and the second matrix is not unconditionally poised.
The following Corollary gives some conditions under which the almost every qualification may be dropped.

Corollary 3.1. Let l be an integer for which the matrix $\left\|e_{i j}\right\|_{j \geqslant 2}$ is hermitian; i.e., $e_{i, j}=1$ and $j \geqslant l \Rightarrow e_{i, j^{\prime}}=1$ for each $j^{\prime}=l, \ldots, j$. Then the conclusions of Theorem 3.2 hold without reservation for each $p=l, \ldots, n-1$.

Proof. The Corollary is true iff the matrix $E^{\prime \prime}$ constructed in the proof is order-poised. But under the stated conditions $E^{\prime \prime}$ is quasihermite. Hence it is order poised [6].
3. $\mathbf{(3 . 2)} \Rightarrow(3.1)$

The following theorem and its corollary will be needed here. Its proof is deferred to Section 5.

Theorem 3.3. As a function of $\mathbf{x}, \Delta \equiv \sum_{j=p} \Delta_{i j}^{(p)}$ iff $M_{p-1}=p$. If E satisfies (SPC) then $\Delta \equiv \sum_{j=p} \Delta_{i j}^{(p)}$ only if $p=0$.

Corollary 3.2. If E satisfies (SPC), then almost everywhere $\Delta \neq \sum_{j=p} \Delta_{i j}^{(p)}$ for $p \geqslant 1$.

The machinary has now been developed for proving that statement (3.2) of Theorem 3.1 implies statement (3.1).

Theorem 3.4. Let E satisfy (SPC) and the integer $p, 1 \leqslant p \leqslant n-1$ and $g \in C^{(n-p)}[0,1]$ be given. For almost all $\mathbf{x},\left\langle g^{(q-p)}, W_{q}^{(n-q)}\right\rangle=0$ for $q=p, \ldots, n-1 \Rightarrow g^{(j-p)}\left(x_{i}\right)=0$ for $e_{i j}=1$ and $j \geqslant p$.

Proof. Assume the implication holds on the range $p+1, \ldots, n-1$. The case for $p=n-1$ follows from the fact that $\left\{i: e_{i, n-1}=1\right\}=\varnothing$ when E satisfies (SPC). Thus, it may be assumed that $g^{(j-p)}\left(x_{i}\right)=0$ for $e_{i j}=1, j \geqslant p+1$ and it only remains to show that $g\left(x_{i}\right)=0$ whenever $e_{i p}=1$. If $m_{p}=0$, this is trivially satisfied. Thus, it may be assumed that $m_{p}>0$.

Lemma 2.1 gives

$$
\begin{equation*}
\left\langle g, W_{p}^{(n-p)}\right\rangle=\sum_{j \leqslant p-1} \hat{g}^{(j)}\left(x_{i}\right) \Delta_{i j}^{(p)}=0 \tag{3.4}
\end{equation*}
$$

where \hat{g} is a p-fold integral of g. Furthermore,

$$
\begin{equation*}
\left\langle g, W_{q}^{(n-q)}\right\rangle=\sum_{j \leqslant p} \hat{g}^{(j)}\left(x_{i}\right) \Delta_{i j}^{(q)}=0, \quad q=p+1, \ldots, n-1, \tag{3.5}
\end{equation*}
$$

again by Lemma 2.1 and the inductive hypothesis. Thus, for arbitrary constants $a_{p+l}, b_{q}^{(l)}(3.5)$ yields

$$
\begin{equation*}
\sum_{j \leqslant p} \hat{g}^{(j)}\left(x_{i}\right)\left\{a_{p+l} \Delta_{i j}^{(p+l)}+\sum_{q=p+m_{p}+1}^{M_{p}-1} b_{q}^{(l)} \Delta_{i j}^{(q)}\right\}=0 \tag{3.6}
\end{equation*}
$$

for $l \geqslant 1$. According to Theorem 3.2 the constants $a_{p+l} \neq 0, b_{q}^{(l)}$ can be chosen so that the quantity inside the curly brackets reduces to $\Delta_{i j}^{(p)}$ for $j \leqslant p-1$. But then relation (3.4) says these quantities can be deleted from the sum. Thus, (3.6) reduces to

$$
\begin{equation*}
\sum_{i \in \Lambda_{p}} \hat{g}^{(p)}\left(x_{i}\right)\left\{a_{p+l} \Delta_{i p}^{(p+l)}+\sum_{q=p+m_{p}+1}^{M_{p}-1} b_{a}^{(l)} \Delta_{i \boldsymbol{p}}^{(q)}\right\}=0 \tag{3.7}
\end{equation*}
$$

for $l=1, \ldots, m_{p}, \Lambda_{p}=\left\{i: e_{i p}=1\right\}$.
Let $c_{l, i}$ be the quantity in the curly brackets of (3.7) and $\mathbf{c}_{l}=\left(c_{l, i}\right)_{i \in A_{p}}$. There are m_{p} such vectors each of length m_{p}. If they are independent then (3.7) yields the desired result $0=\hat{g}^{(p)}\left(x_{i}\right)=g\left(x_{i}\right)$ whenever $e_{i p}=1$.

Suppose they are dependent. Then there are constants d_{l} not all zero for which $\sum_{l=1}^{m_{p}} d_{l} \mathbf{c}_{l}=0$. This gives

$$
\begin{equation*}
\sum_{l=1}^{m_{p}} d_{l}\left\{a_{p+l} l_{i p}^{(p+l)}+\sum_{q=p+m_{p}+1}^{M_{p}-1} b_{q}^{(l)} \Delta_{i p}^{(q)}\right\}=0 \tag{3.8}
\end{equation*}
$$

for each $i \in \Lambda_{p}$. Let $V_{q}{ }^{*}=\left(\Lambda_{i j}^{(q)}\right)_{j \leqslant p}$ and \hat{V}_{p} be V_{p} with m_{p} zeros joined on to it. Relation (3.8) and the way the constants $a_{p+l}, b_{q}^{(l)}$ were chosen yields

$$
\begin{equation*}
\sum_{l=1}^{m_{p}} d_{l}\left\{a_{p+l} V_{p+l}^{*}+\sum_{q=p+m_{p}+1}^{M_{p}-1} b_{q}^{(l)} V_{q}^{*}\right\}=\left(\sum_{l=1}^{m_{p}} d_{l}\right) V_{p} \tag{3.9}
\end{equation*}
$$

Let $f_{l}=d_{l} a_{p+l}, e_{q}=\sum_{l=1}^{m_{p}} d_{l} b_{q}^{(l)}$ and $B=\sum_{l=1}^{m_{p}} d_{l}$. Then (3.9) can be rewritten as

$$
\begin{equation*}
\sum_{l=1}^{m_{p}} f_{l} V_{p+l}^{*}+\sum_{q=p+m_{p}+1}^{M_{p}-1} e_{q} V_{q}^{*}=B \cdot \hat{V}_{p} \tag{3.10}
\end{equation*}
$$

Not all f_{l} are zero since some $d_{l} \neq 0$ and all $a_{p+l} \neq 0$.
Case 1. $B=0$. Theorem 3.2 implies the vectors $V_{p+1}^{*}, \ldots, V_{M_{p}-1}^{*}$ are independent for almost all \mathbf{x}. Thus, $B=0 \Rightarrow$ all f_{l} and e_{q} are zero. This is a contradiction.

Case 2. $\quad \mathbf{B} \neq 0$. The definition of $W_{q}^{(n-1-p)}$ gives the identity

$$
\begin{equation*}
\sum_{q=p+m_{p}+1}^{M_{\nu}-1} e_{q} W_{q}^{(n-1-p)}+\sum_{l=1}^{m_{p}} f_{l} W_{p+l}^{(n-1-p)} \equiv B\left\{W_{p}^{(n-1-p)}-(-1)^{n-1-p} \sum_{i \in \Lambda_{p}} \Delta_{i p}^{(p)}\right\} \tag{3.11}
\end{equation*}
$$

which is valid for $t<x_{1}$. But the LHS is already zero. Since $W_{p}^{(n-1-p)}(t) \equiv$ $(-1)^{n-1-p} \Delta$ for $t<x_{1}$, (3.11) reduces to $\Delta=\sum_{i \in \Lambda_{p}} \Delta_{i p}^{(p)}$. Theorem 3.3 says this is not an identity in \mathbf{x} for $p \neq 0$ and, hence, it fails for almost all choices of \mathbf{x}.

These results are summarized in Theorem 4.1 of Section 4.

4. Applications and Examples

Several consequences of Theorem 4.1 are derived which relate to the problems of interpolation of Hermite-Birkhoff data by functions with a specified derivative; to the problem of E being poised; and to the problem of simple matrices. Two examples are discussed, one of which shows that the converse of Theorem 1.3 does not hold.

Theorem 4.1. Let E satisfy (SPC). Let p be a given integer, $1 \leqslant p \leqslant n-1$ and $g \in C^{(n-p)}[0,1]$. For almost every \mathbf{x}, there is an $f \in Z(E, \mathbf{x})$ for which $f^{(p)} \equiv g$ iff $\left\langle g^{(q-p)}, W_{q}^{(n-q)}\right\rangle=0$ for $q=p, \ldots, n-1$.

1. Applications

Corollary 4.1 (Birkhoff). Let $p=n-1$. There is an $f \in Z(E, \mathbf{x})$ for which $f^{(n-1)} \equiv g$ iff $\left\langle g, W_{n-1}^{\prime}\right\rangle=0$. This statement holds for every \mathbf{x}.

Proof. Corollary 3.1 shows that Theorem 3.2 holds everywhere if $p=n-1$. Also, Corollary 3.2 holds everywhere since $\left\{i: e_{i, n-1}=1\right\}=\varnothing$ when E satisfies (SPC).

Corollary 4.2. E is poised at \mathbf{x} iff $\int_{0}^{1} W_{n-1}^{\prime}(t) d t \neq 0$.
Proof. $\quad \int_{0}^{1} W_{n-1}^{\prime}(t) d t=\Delta$.
Corollary 4.3 (Interpolation). Let E, p, g be given as in Theorem 4.1. Let $y_{i j}$ be data corresponding to $e_{i j}=1$. For almost all \mathbf{x}, there is a function $f(x)$ for which $f^{(j)}\left(x_{i}\right)=y_{i j}$ when $e_{i j}=1$ and

$$
f^{(p)} \equiv g \quad \text { iff } \quad\left\langle g^{(j-p)}, W_{q}^{(n-q)}\right\rangle=\sum_{j \leqslant q-1} y_{i j} y_{i j}^{(q)}
$$

for $q=p, \ldots, n-1$.
Proof. Let $p(x)$ be the unique element of Π_{n-1} satisfying $p^{(j)}\left(x_{i}\right)=y_{i j}$ when $e_{i j}=1$. Suppose there is such a function f. Then $f-p \in Z(E, \mathbf{x})$ and $f^{(p)}-p^{(p)} \equiv g-p^{(p)}=h$. Thus,

$$
0=\left\langle h^{(j-p)}, W_{a}^{(n-q)}\right\rangle=\left\langle g^{(j-p)}, W_{q}^{(n-q)}\right\rangle-\left\langle p^{(p)}, W_{q}^{(n-q)}\right\rangle
$$

for $q=p, \ldots, n-1$. Now Lemma 2.1 gives

$$
\begin{aligned}
\left\langle p^{(p)}, W_{q}^{(n-q)}\right\rangle & =\sum_{j \leqslant q-1} p^{(j)}\left(x_{i}\right) \Delta_{i j}^{(q)} \\
& =\sum_{j \leqslant q-1} y_{i j} \Delta_{i j}^{(q)}
\end{aligned}
$$

and the implication is shown one way.
Suppose $\left\langle g^{(j-p)}, W_{q}^{(n-q)}\right\rangle=\sum_{j \leqslant q-1} y_{i j} \Delta_{i j}^{(q)}$. Then $\left\langle h^{(j-p)}, W_{q}^{(n-q)}\right\rangle=0$ for $q=p, \ldots, n-1$. Thus, there exists $f \in Z(E, \mathbf{x})$ such that $f^{(p)} \equiv h \equiv g-p^{(p)}$. The function $\hat{f}=f+p$ satisfies $\hat{f}^{(j)}\left(x_{i}\right)=y_{i j}$ when $e_{i j}=1$ and $\hat{f}^{(p)}=f^{(p)}+p^{(p)}=g-p^{(p)}+p^{(p)}=g$.

2. Simple Matrices

Corollary 4.4. E is simple at \mathbf{x} only if the function W_{n-1}^{\prime} is strictly of one sign.

Proof. If W_{n-1}^{\prime} has a sign change then there is a strictly positive function g such that $\left\langle g, W_{n-1}^{\prime}\right\rangle=0$. According to Corollary 4.1 there is an $f \in Z(E, \mathbf{x})$ such that $f^{(n-1)} \equiv g>0$. Hence, E cannot be simple.

Consider again the example

$$
E_{1}=\left\|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right\|
$$

of Section 1. It was shown there that E_{1} is not simple for every \mathbf{x}. This can also be shown using Corollary 4.4. Here, $\Delta_{1,0}^{(2)}=+1, \Delta_{2,1}^{(2)}=x_{3}-x_{1}$ and $\Delta_{3,0}^{(2)}=-1$. Thus,

$$
\begin{aligned}
W_{2}^{\prime}(t) & =-\left(x_{1}-t\right)_{+}+\left(x_{1}-x_{3}\right)\left(x_{2}-t\right)_{+}^{0}+\left(x_{3}-t\right)_{+} \\
& = \begin{cases}0 & t<x_{1} \\
t-x_{1} & x_{1}<t<x_{2} \\
t-x_{3} & x_{2}<t<x_{3} \\
0 & x_{3}<t\end{cases}
\end{aligned}
$$

This function always has a sign change at $t=x_{2}$. By Corollary $4.4 E_{1}$ is not simple at any value of $\left(x_{1}, x_{2}, x_{3}\right)=\mathbf{x}$.

Now consider the following example.

$$
E=\left\|\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0
\end{array}\right\|
$$

Lorentz and Zeller [5] have shown that this matrix is order-poised. The question arises: Is it simple for all \mathbf{x} ? Here, $n=6$. Fix $x_{1}=0, x_{2}=z$, $x_{3}=1$.

$$
\begin{aligned}
\Delta_{1,0}^{(5)} & =\frac{z}{2}-\frac{z^{2}}{2}, & \Delta_{2.4}^{(5)} & =-\frac{1}{72} z^{3}+\frac{1}{48} z^{2}-\frac{1}{144} z \\
\Delta_{1,1}^{(5)} & =-\frac{1}{2} z^{2}+\frac{1}{3} z-\frac{1}{12}, & \Delta_{3,0}^{(5)} & =\frac{z^{2}}{2}-\frac{z}{2} \\
\Delta_{2,1}^{(5)} & =\frac{1}{12}, & \Delta_{3,1}^{(5)} & =\frac{z}{6}-\frac{z^{2}}{4} .
\end{aligned}
$$

$$
W_{5}^{\prime}(t)= \begin{cases}\frac{t^{3}}{144}\left[2+6 z^{2}-8 z+(3 z-1379) t\right] & 0<t<z \\ \frac{(t-1)^{3}}{6}\left[\frac{1}{8}\left(z^{2}-z\right)(1-t)+\frac{z}{6}-\frac{z^{2}}{4}\right] & z<t<1\end{cases}
$$

A computation reveals the following.
(i) $0<z<1 / 3$ or $2 / 3<z<1$: $W_{5}{ }^{\prime}(t)$ has exactly one sign change and this occurs at $t=z$.
(ii) $1 / 3<z<1-1 / \sqrt{3}: W_{5}^{\prime}(t)$ has two sign changes occurring at $t=z$ and $t=-\left(2+6 z^{2}-8 z\right) /\left(3 z-3 z^{2}\right)$.
(iii) $1 / \sqrt{3}<z<2 / 3: W_{5}^{\prime}(t)$ has two sign changes occurring at $t=z$ and $t=1+(2 / 3)(2-3 z) /(z-1))$.
(iv) $1-1 / \sqrt{3}<z<1 / \sqrt{3}: W_{5}^{\prime}(t)$ has no sign changes.

Thus, if z satisfies (i), (ii), or (iii), E is not simple at the vector $\mathbf{x}=(0, z, 1)$. However, if z satisfies (iv), E is simple at $(0, z, 1)$. This example shows that the converse of Theorem 1.3 does not hold.

5. Proof of Theorem 3.3

The theorem to be proven is
Theorem 3.3. As a function of $\mathbf{x}, \Delta \equiv \sum_{i \in \Lambda_{p}} \Delta_{i p}^{(p)}$ iff $M_{p-1}=p$.
In the theorem, Δ is the VdM determinant of an incidence matrix E and $\Lambda_{p}=\left\{i: e_{i p}=1\right\}$. The concept of coalescing rows of a matrix E and some lemmas on polynomial identities are needed for the proof. Once these are established the proof proceeds by cases depending on k and m_{p}.

The coalescing of rows i, i^{\prime} of E proceeds as follows. Let row i have t ones in it given by $e_{i, j_{1}}=e_{i, j_{2}}=\cdots=e_{i, j_{t}}=1$. A new sequence l_{1}, \ldots, l_{t} is defined by
(i) $l_{q} \geqslant j_{q} \quad q=1, \ldots, t$
(ii) $e_{i^{\prime}, l_{q}}=0 \quad q=1, \ldots, t$
(iii) $\sum_{q=1}^{t}\left(l_{q}-j_{q}\right)=$ minimum over sequences satisfying (i) and (ii).

The coalesced matrix $E_{i i^{\prime}}$ is formed by deleting rows i, i^{\prime} and replacing them with the single row i^{*} defined by

$$
e_{i^{* j}}=\left\{\begin{array}{ll}
1, & e_{i^{\prime} j}=1 \\
0, & \text { otherwise. }
\end{array} \quad \text { or } \quad j=l_{q}, \quad q=1, \ldots, t\right.
$$

As an example let

$$
E=\left\|\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right\|
$$

Then

$$
E_{12}=\left\|\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right\|, \quad E_{23}=\left\|\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0
\end{array}\right\| .
$$

The following facts about $E_{i i^{\prime}}$ will be needed.

$$
\begin{gather*}
\Delta_{i i^{\prime}}=\left.\frac{\partial^{m}}{\partial x_{i}^{m}} \Delta\right|_{x_{i}=x_{i^{\prime}}} \quad \text { where } m=\sum_{q=1}^{t}\left(l_{q}-j_{q}\right) . \tag{5.2}\\
E_{i i^{\prime}}=E_{i^{\prime} i} . \tag{5.3}
\end{gather*}
$$

$$
\begin{equation*}
\text { If } E \text { satisfies (PC) then } E_{i i^{\prime}} \text { also satisfies (PC). } \tag{5.4}
\end{equation*}
$$

Lemma 5.1. Let E satisfy (PC) with $k=3$. Suppose one row consists entirely of zeros except for a single one. If that one does not occur in the initial position and $M_{p-1} \neq p$, then there is a real vector $\left(x_{1}, x_{2}, x_{3}\right)$ at which E is not poised.

Proof. This is a special case of a more general theorem of Lorentz and Zeller [5].

Lemma 5.2. $\Delta\left(x_{1}, \ldots, x_{k}\right) \equiv \Delta\left(x_{1}+t, \ldots, x_{k}+t\right)$ for every t and every \mathbf{x}.
Proof. It is clear that $\Delta\left(x_{1}, \ldots, x_{k}\right)=0$ iff $\Delta\left(x_{1}+t, \ldots, x_{k}+t\right)=0$. Thus, as polynomials in the variables x_{i} they both have the same zero sets. Hence, they are identical.

For $0 \leqslant q \leqslant n-1$ and $e_{i j}=1$ define the incidence matrix $E_{i j}^{(q)}$ by joining a $(k+1)$ row with zeros everywhere except in position q and then changing $e_{i j}$ to zero. Let $\theta=x_{k+1}$ and $\Delta_{i j}^{(a)}(\theta)$ be the corresponding VdM determinant. Note that $\Delta_{i j}^{(q)}(0)=\Delta_{i j}^{(q)}$.

Lemma 5.3. $\Delta \equiv \sum_{i \in \Lambda_{p}} \Delta_{i p}^{(p)}$ iff $\Delta \equiv \sum_{i \in \Lambda_{p}} \Delta_{i p}^{(p)}(\theta)$ for every θ.
Proof. The sufficiency is trivial. On the other hand, suppose $\Delta \equiv \sum_{i \in A_{p}} \Delta_{i p}^{(p)}$. By Lemma 5.2,

$$
\begin{aligned}
\Delta\left(x_{1}, \ldots, x_{k}\right) & \equiv \Delta\left(x_{1}-\theta, \ldots, x_{k}-\theta\right) \\
& \equiv \sum_{i \in \Lambda_{p}} \Delta_{i p}^{(p)}\left(x_{1}-\theta, \ldots, x_{k}-\theta, 0\right) \equiv \sum_{i \in \Lambda_{p}} \Delta_{i p}^{(p)}\left(x_{1}, \ldots, x_{k}, \theta\right) .
\end{aligned}
$$

Proof of Theorem 3.3

(1) Sufficiency. Suppose $M_{p-1}=p$. If $p=0$ in which case $M_{-1}=0$ then $\sum_{i \in \Lambda_{p}} \Delta_{i, 0}^{(0)}$ is the expansion of Δ by cofactors along its last column. Hence, $\Delta \equiv \sum_{i \in \Lambda_{p}} \Delta_{i, 0}^{(0)}$. Suppose $p>0$. According to Theorem 1.1(ii) E can be written as $E=E^{\prime} \oplus E^{\prime \prime}$ where E^{\prime} is a p-incidence matrix and $E^{\prime \prime}$ is an ($n-p$)-incidence matrix. In this case the VdM matrix has the form

$$
V=\left(\begin{array}{ll}
A & V^{\prime} \\
V^{\prime \prime} & 0
\end{array}\right)
$$

where $V^{\prime}, V^{\prime \prime}$ are the $V d M$ matrices of $E^{\prime}, E^{\prime \prime}$, respectively. Thus, $\Delta=-\Delta^{\prime} \Delta^{\prime \prime}$. By induction $\Delta^{\prime \prime}=\sum_{i \in \Lambda_{p}} \Delta_{i, 0}^{\prime \prime(0)}$ and it is easily checked that $\Delta^{\prime} \Delta_{i, 0}^{\prime \prime(0)}=\Delta_{i, p}^{(p)}$. Hence, sufficiency is shown.
(2) Necessity. The proof of necessity is divided into four cases. It is assumed that $p>0$ throughout the discussion and that E satisfies (PC) and that $M_{p-1} \geqslant p+1$.

Case 1. $k=2, m_{p}=1$. Suppose $\Delta \equiv \Delta_{i p}^{(p)}(\theta)$. The matrix $E_{i p}^{(p)}$ satisfies the conditions of Lemma 5.1. Hence, it is not poised at some point (x_{1}, x_{2}, θ). But E is unconditionally poised by Theorem 1.2. This is a contradiction.

Case 2. $k=m_{p}=2$. Suppose $\Delta \equiv \Delta_{1}^{(p)}(\theta)+\Delta_{2 p}^{(p)}(\theta)$. Again it will be shown that under this hypothesis Δ is not unconditionally poised. Observe that $\left(d^{q} / d \theta^{q}\right) \Delta_{i p}^{(p)}(\theta) \equiv \Delta_{i p}^{(p+q)}(\theta)$. Let $q^{*} \geqslant p+1$ be the first index for which $M_{q^{*}}=q^{*}+2$. Differentiating ($q^{*}-p$) times with respect to θ and remembering that Δ is a constant in θ, one obtains $0 \equiv \Delta_{1 p}^{\left(q_{p}^{*}\right)}(\theta)+\Delta_{2 p}^{\left(q^{*}\right)}(\theta)$. By the choice of q^{*} the two matrices $E_{1 p}^{\left(q^{*}\right)}$ and $E_{2 p}^{\left(q^{*}\right)}$ satisfy the conditions of Lemma 5.1. Thus, there is a choice of θ for which $\Delta_{1 p}^{\left(Q_{p}^{*}\right)}(\theta)=\Delta_{2 p}^{\left(\alpha^{*}\right)}(\theta)=0$. Hence, there exist nontrivial polynomials $p_{i}(x)$ of degree less than n satisfying $p_{i}(x) \in Z\left(E_{i p}^{(q)}, \mathbf{x}\right)$. Construct an $(n-1)$-incidence matrix \widetilde{E} from E by changing $e_{1 p}$ and $e_{2 p}$ to zero and adding a row with a one in the q^{*} position and zeros elsewhere. By the choice of q^{*},

$$
\tilde{E}=E_{1} \oplus E_{2} \oplus E_{3} \quad\left(E_{2}=\left\|\begin{array}{l}
1 \\
0 \\
0
\end{array}\right\|\right)
$$

where each E_{i} is unconditionally poised. Hence, \tilde{E} is an unconditionally poised $(n-1)$ matrix. Each $p_{i}(x) \in Z(\tilde{E}, \mathbf{x})$. Thus, degree $p_{i}=n-1$ and $p_{i}(x) \equiv d \cdot p_{2}(x)$ for a constant d. This in turn implies $p_{1}(x) \in Z\left(E_{i 1}^{\left(Q^{*}\right)}, \mathbf{x}\right) \cap$ $Z\left(E_{i 2}^{q^{*}}, \mathbf{x}\right)$ which gives $p_{1}(x) \in Z(E, \mathbf{x})$. This is a contradiction.

Case 3. $k \geqslant 3, m_{p}=k$. In order to handle this case some further properties of the VdM determinant Δ are necessary. In particular, the degree
of Δ in x_{i} and the order of zero that Δ has at $x_{i}=x_{i}{ }^{\prime}$ are needed. Suppress row i of the matrix E. Then the remaining matrix can be written as

$$
\begin{equation*}
E_{1} \oplus E_{2} \oplus \cdots \oplus E_{2 r} \tag{5.5}
\end{equation*}
$$

where the matrices with odd indices satisfy (PC) and those with even indices are zero matrices. If row i has t ones in it given by $e_{i, j_{q}}=1, q=1, \ldots, t$, then the zero matrices of (5.5) will have a total of t columns. These columns have labels $l_{q}{ }^{*}$ in E with each $l_{q}{ }^{*} \geqslant j_{q}$. The degree of Δ as a polynomial in x_{i} is $m^{*}=\sum_{q=1}^{t}\left(l_{q}{ }^{*}-j_{q}\right)$. Also, $\left(\partial^{m^{*}} / \partial x_{i}{ }^{*}\right) \Delta$ is the VdM determinant of the matrix E^{*} obtained from (5.5) by putting a one in each of the columns of the even indexed matrices. Finally, the order of zero of Δ at $x_{i}=x_{i^{\prime}}$ is the number $m \leqslant m^{*}$ defined by (5.1). For proofs of these statements the reader is referred to [3].

Definition 5.1. Column q of the incidence matrix E is free in E if $M_{q-1}=q$.

Lemma 5.4. Suppose $m_{p}=k \geqslant 3$ and $\Delta \equiv \sum_{i \in A_{p}} \Lambda_{i p}^{(p)}$. If $E_{2 s+1}$ is the matrix in (5.5) that contains the remainder of column p, then that column is free in $E_{2 s+1}$.

Proof. Without loss of generality take $i=1$ in (5.4). Then Δ and each $\Delta_{i p}^{(p)} i \neq 1$ will have degree m^{*} in x_{1}. The degree of $\Delta_{i p}^{(p)}$ in x_{1} will be $m^{*}-l_{q}{ }^{*}-p<m^{*}$ where $l_{q-1}^{*}<p<l_{q}{ }^{*}$. Lemma 5.4 can be assumed to hold for matrices with fewer than k rows since by Case 2 it holds for two rows. Then

$$
\frac{\partial^{m^{*}}}{\partial x_{1}^{m *}} \Delta \equiv \sum_{i \neq 1} \frac{\partial^{m^{*}}}{\partial x_{1}^{m *}} \Delta_{i p}^{(\eta)} .
$$

But this is a representation of the VdM of E^{*} along its p-th column. This is possible by induction iff the p-th column of E^{*} is free in the submatrix $E_{2 s+1}$.

The next lemma shows that in some cases, if an identity of the type being discussed holds, then it carries over to the coalesced matrix.

Lemma 5.5. $m_{p}=k$ and $\Delta \equiv \sum_{i \in \Lambda_{p}} \Delta_{i p}^{(p)}$. Suppose E has two rows (say rows 1 and 2) for which $l_{q}<p$ whenever $j_{q}<p$ in (5.1). Then the identity carries over to a similar one for the coalesced matrix E_{12}.
Proof. Let $m=\sum_{q=1}^{t}\left(l_{q}-j_{q}\right)$ where row 1 of E has t ones in it corresponding to the index pairs $\left(1, j_{q}\right), m$ is the number given by (5.1). Let \tilde{J} be the VdM determinant of E_{22}.

Then

$$
\tilde{\Delta}=\left.\frac{\partial^{m}}{\partial x_{1}^{m}} \Delta\right|_{x_{1}=x_{2}}
$$

according to (5.2). Also,

$$
\tilde{J}_{i p}^{(p)}=\left.\frac{\partial^{m}}{\partial x_{1}{ }^{m}} \Delta_{i p}^{(p)}\right|_{x_{1}=x_{2}}
$$

for $i=3, \ldots, k$. Differentiating the expression for Δ gives

$$
\left.\tilde{\Delta} \equiv \frac{\partial^{m}}{\partial x_{1}{ }^{m}} \Delta_{\mathbf{1 p}}^{(p)}\right|_{x_{1}=x_{2}}+\left.\frac{\partial^{m}}{\partial x_{1}{ }^{m}} \Delta_{\mathbf{2} p}^{(p)}\right|_{x_{1}=x_{2}} ^{+}+\sum_{i \geqslant 3} \tilde{J}_{i \boldsymbol{p}}^{(p)}
$$

Thus, it must be shown that

$$
\left.\frac{\partial^{m}}{\partial x_{1}{ }^{m}} \Delta_{1 v}^{(p)}\right|_{x_{1}=x_{2}}+\left.\frac{\partial^{m}}{\partial x_{2}{ }^{m}}\right|_{x_{1}=x_{2}} \equiv \tilde{J}_{1 p}^{(p)}
$$

Let $y_{1}, \ldots, y_{t^{\prime}}$, be the column indices of the ones in row 2. Since $e_{1 p}=e_{2 p}=1$, there are indices s, s^{\prime} for which $j_{s}=y_{s^{\prime}}=p$. The determinants $\Delta_{1 p}^{(p)}, \Delta_{2 p}^{(p)}$ can be represented schematically by the sequences

$$
\left(j_{1}, \ldots, j_{s-1}, p^{*}, j_{s+1}, \ldots, j_{t}, y_{1}, \ldots, y_{t^{\prime}}\right)
$$

and

$$
\left(j_{1}, \ldots, j_{t}, y_{1}, \ldots, y_{s^{\prime}-1}, p^{*}, y_{s^{\prime}+1}, \ldots, y_{t^{\prime}}\right)
$$

In this representation the indices j_{q} represent rows of the determinant of the form

$$
\left(\frac{x_{1}^{n-1-j_{q}}}{\left(n-1-j_{q}\right)}, \frac{x_{1}^{\left(n-2-j_{q}\right)}}{\left(n-2-j_{q}\right)}, \ldots, 1,0, \ldots, 0\right)
$$

Similarly y_{q} represents rows of the same form with j_{q} and x_{1} replaced by y_{q} and x_{2}. The index p^{*} represents the row ($0, \ldots, 0,1,0, \ldots, 0$) with the one appearing in the p-th position. Formally, $\left(\partial^{m} / \partial x_{1}{ }^{m}\right) \Delta_{2 p}^{(p)}$ is a sum of determinants of the form

$$
\begin{equation*}
\left(j_{1}+r_{1}, \ldots, j_{t}+r_{t}, y_{1}, \ldots, y_{s^{\prime}-1}, p^{*}, y_{s^{\prime}-1}, \ldots, y_{i^{\prime}}\right) \tag{5.6}
\end{equation*}
$$

with each $j_{q}+r_{q}<j_{q+1}+r_{q+1}$ and $\sum_{q=1}^{t} r_{q}=m$. Now, when x_{1} is set equal to x_{2}, many of the forms (5.6) will be zero since they will have identical rows. Those that are not a priori zero must satisfy

$$
\begin{equation*}
r_{q}=l_{q}-j_{q} \quad \text { for } \quad q=1, \ldots, s-1 \tag{5.7}
\end{equation*}
$$

because of the assumption that $l_{q}<p$ whenever $j_{q}<p$. Also, they must satisfy

$$
\begin{equation*}
j_{q}+r_{q} \neq y_{q^{\prime}} \quad \text { for each } q \text { and } q^{\prime} \tag{5.8}
\end{equation*}
$$

Among all the forms (5.6) satisfying (5.7) and (5.8), the one with $r_{q}=l_{q}-j_{q}$ for each $q=1, \ldots, t$ gives $\tilde{J}_{1 p}^{(p)}$ when $x_{1}=x_{2}$. The remaining terms have the form

$$
\begin{equation*}
\left(l_{1}, \ldots, l_{s-1}, p, j_{s+1}+r_{s+1}, \ldots, j_{t}+r_{t}, y_{1}, \ldots, y_{s^{\prime}-1}, p^{*}, y_{s^{\prime}+1}, \ldots, y_{t^{\prime}}\right) \tag{5.9}
\end{equation*}
$$

A similar analysis on $\left(\partial^{m} / \partial x_{1}^{m}\right) \Delta_{1 p}^{(p)}$ shows that when $x_{1}=x_{2}$ this quantity consists of determinants of the form

$$
\begin{equation*}
\left(l_{1}, \ldots, l_{s-1}, p^{*}, j_{s+1}+r_{s+1}, \ldots, j_{t}+r_{t}, y_{1}, \ldots, y_{s^{\prime}-1}, p_{1} y_{s^{\prime}+1}, \ldots, y_{t^{\prime}}\right) \tag{5.10}
\end{equation*}
$$

These differ from those of (5.9) by having rows p, p^{*} interchanged. Thus, they cancel when $\left.\left(\partial^{m} / \partial x_{1}{ }^{m}\right) \Delta_{1 p}^{(p)}\right|_{x_{1}=x_{2}}$ is added to $\left.\left(\partial^{m} / \partial x_{1}{ }^{m}\right) \Delta_{2 p}^{(p)}\right|_{x_{1}=x_{2}}$ and it has been shown that

$$
\left.\frac{\partial^{m}}{\partial x_{1}^{m}} \Delta_{1 p}^{(p)}\right|_{x_{1}=x_{2}}+\left.\frac{\partial^{m}}{\partial x_{1}^{m}} \Delta_{2 p}^{(p)}\right|_{x_{1}=x_{2}} \equiv \widetilde{\Delta}_{1 p}^{(p)}
$$

Lemma 5.6. Suppose $m_{p}=k \geqslant 3$ and there is some row i for which column p is free in the decomposition (5.5). Then E satisfies the hypothesis of Lemma 5.5.

Proof. Let column p be free when row i is suppressed. Then (5.5) can be written as $E_{1} \oplus \cdots \oplus E_{2 s+1}^{\prime} \oplus E_{2 s+1}^{\prime \prime} \oplus \cdots \oplus E_{2 r}$. The remainder of column p is the first column of $E_{2 s+1}^{\prime \prime}$. Let $i^{\prime}, i^{\prime \prime}$ be any two rows of E except the given row i. Since the coalescing of row i^{\prime} and $i^{\prime \prime}$ depend only on their structure, the numbers l_{q} may be determined by coalescing in the decomposition. If $j_{q}<p$ then $e_{i^{\prime}, j_{q}}$ lies in $E_{2 c+1}$ for $c<s$ or in $E_{2 s+1}^{\prime} \cdot l_{q}$ will lie in the same matrix. Hence, $l_{q}<p$.

These lemmas are used to show that the identity $\Delta \equiv \sum_{i \in \Lambda_{p}} \Delta_{i p}^{(p)}$ does not hold in Case 3 (i.e., $m_{p}=k \geqslant 3$). In fact, if the identity holds, then Lemma 5.4 implies the remainder of column p is free in the decomposition (5.5). But then Lemma 5.6 implies the hypotheses of Lemma 5.5 hold. Thus, the identity reduces to a similar one for the reduced matrix. By induction this must fail.

Case 4. $k \geqslant 3$ and $m_{p}<k$. Without loss of generality it may be assumed that $1 \in \Lambda_{p}$ and $k \notin \Lambda_{p}$. Let m be the order of the zero of Δ at $x_{1}=x_{k}$. For each $i \in \Lambda_{p}, i \neq 1 \Delta_{i p}^{(p)}$ has the same order zero at $x_{1}=x_{k}$ as does Δ. Thus, $\Delta_{i p}^{(p)}$ must have a zero of order m at $x_{1}=x_{k}$. The order of this zero
is $m-\left(l_{s}-j_{s}\right)$ where $j_{s}=p$. Thus, $l_{s}=j_{s}$. But now the coalesced matrix $E_{1 k}$ satisfies $M_{p-1} \geqslant p+1$ and satisfies an identity of the same type as Δ. The reduction can be continued until Case 1,2 , or 3 holds. This yields a contradiction. Thus, Theorem 3.3 is proven.

References

1. K. Atkinson and A. Sharma, A partial characterization of poised Hermite-Birkhoff interpolation problems, SIAM J. Numer. Anal. 6 (1969), 230-235.
2. G. D. Birkhoff, General mean value and remainder theorems with applications to mechanical differentiation and integration, TAMS 7 (1906), 107-136.
3. David Ferguson, The question of uniqueness for G. D. Birkhoff interpolation problems, J. Approximation Theory 2 (1969), 1-28.
4. David Ferguson, On a Theorem of Atkinson and Sharma, MRC Tech. Sum. \#971, MRC University of Wisconsin, June, 1969.
5. G. G. Lorentz and K. Zeller, Birkhoff interpolation, SIAM J. Numer. Anal. 8 (1971), 43-48.
6. I. J. Schoenberg, On Hermite-Birkhoff interpolation, J. Math. Anal. Appl. 16 (1966), 538-543.

[^0]: * Research supported in part by NSF Grant No. GP-20130. Present address: Aerospace Corporation, P. O. Box 92957, Los Angeles, Califormia 90009.

